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Abstract—To facilitate content distribution and diffusion, effi-
cacious caching strategy plays an important role in content dis-
semination control, especially in dynamic mobile social networks
(MSNs), where contents spreading and accessing rely mainly
on opportunistic contacts in physical proximity. Since content
dissemination much resembles epidemic dynamics, two caching
control schemes, caching at external BS and cooperative in-
network caching, are investigated to assay the system behaviours
and performance via epidemic dynamics. When time dynamic is
considered, we provide a more realistic scenario where the cost of
caching is related to the time duration of caching; hence optimal
control theory are exploited to determine the optimal caching time
for the content spreading. Moreover, we provide proactive caching
analysis as a preventive system response to handle severe outbreak
of the epidemic content, which would often cause instantaneous
service burden in the system. Finally, virality is shown to be
an important content feature when implementing caching. This
research, from the aspect of system dynamics, paves novel avenues
to content dissemination and caching utilization in mobile social
networks.

Index Terms—Caching, content dissemination, epidemic model,
mobile social networks, optimal control, resource utilization.

I. INTRODUCTION

With the advent of mobile communication technologies,

manifold mobile social networks (MSNs) have emerged, facili-

tating direct exchange of contents among mobile users through

large complex mechanism of contacts when they are in physical

proximity, including news, comments, and other mobile social

media [1]. In particular, the direct exchange among users forms

a new spreading behavior and thus dynamic of contents. That

is, in addition to traditional social media distributed to users

through mobile infrastructure networks and cloud servers (e.g.
a base station, BS), users of an interesting content could attract

users of potential interests to access such content through social

interactions [2]. This process is exactly analogous to the well-

known epidemics process, and the users of such content can be

viewed as infected users (Fig. 1). Therefore, due to the fact that

this content dissemination process much resembles the spread

of epidemics, epidemic modelling [3] has been used in myriads

of areas to investigate the information dynamics in MSNs [4]–

[7].

As efficient content access and dissemination is the key to

modern mobile networks, proper content caching [8]–[10] has

been recently suggested as an effective methodology in MSNs
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Fig. 1: The mechanisms of content spreading and caching in mobile social
networks in a snapshot. The users of the content could attract potential users
to access it upon contacts within the range. The content can be accessed by
interested users in two ways: (1) By an backhaul-limited external BS, which
service rate would increase if it caches the content (section II-A). (2) By
sharing from cooperative users who cache the content after accessed it in the
MSN upon contacts (section II-B).

to address the booming traffic volume of social applications

[11]. When caching mechanism is imposed in the MSN, the

users who have viewed the content could store it, thereby

sharing the content to others who also request it in physical

proximity (Fig. 1). Currently, the investigation of caching

focuses on the inhomogeneous popularities of contents to

develop caching mechanisms. However, in MSNs, where the

information dynamics becomes a practical aspect, popularities

could only depict static characteristics of social contents;

alternatively, the virality of the content [12] turns out to be

a more realistic feature of social contents, and more adequate

for epidemic model. Moreover, a further practical engineering

consideration of system cost of caching, time duration of

caching, is often neglected; however, since caching a content

usually occupied the limited storage capacity, the time duration

of caching a content should be taken into account as the metric

of cost. Consequently, in time dynamic systems like MSNs,

the time instant for caching a content must compromises

between the cost of caching, and the system dynamics. To be

more specific, early caching leads to massive waste of storage

capacity, whereas late caching reduces efficiency of caching

and sharing for content dissemination among users. To the

best of our knowledge, the optimal caching time for epidemic

contents still remains an open but critical technical issue in this

complex dynamic system. To identify optimal time for caching

is even more complicated in mobile social networks, owing to
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the fact that mobility nurtures the spread of epidemic contents

and makes precise analysis difficult.

Hence, to carry out the analysis on this dynamic system,

in this paper, we relate the content dissemination in MSNs

to an epidemic, and we consider a more general scenario

that caching is another kind of resource to help spreading the

content. Incorporating the spreading of content and effect of

caching, we formulate the state evolutionary equations of the

system with two cases. First, we consider a BS external to

the MSN which serves the users with the content, referring

to a traditional global serving mechanism in section II-A. It

is realistic that the service rate of the BS will increase if the

content is cached at the BS, since the deficiency of backhaul

capacity is generally a bottleneck in serving the mobile users

[13]. Second, we consider in-network caching at mobile users

in the MSN as a cooperative mechanism to help distribute the

content in section II-B. The system performance is to minimize

the number of unserved users in the observed time and the cost

of caching as well. Leveraging optimal control theory [14], the

optimal caching time is derived in section III. Moreover, we

also explore proactive caching analysis to handle the outbreak

of the epidemic content in the early stage as a common

phenomenon in social networks, providing preventive system

response at the imminent phase (section IV). The evaluation of

system performance and the optimal caching time are provided

in section V, together with the effect of virality of the content.

Finally, section VI concludes this paper.

II. SYSTEM MODEL

In order to analyze the complex and opportunistic mech-

anism of contacts and the time dynamic relationship among

users in the MSN, we adopt the non-linear ordinary differential

equations (ODEs) of epidemic model [3] to describe the

system. Especially, the susceptible-infected-recovered (SIR)

model is utilized as the state evolutionary equations for control

process [15]. To bridge the analogue between the SIR model

and composition of users in the MSN, we denote three com-

partments S(t), I(t), and R(t) as the susceptible, infected,

and recovered population of users inside the MSN at time t.
Therefore, in the MSN, the susceptible users in S(t) represent

the potential viewers of the content; the infected users in I(t)
are contagious users who want but still waiting for the content;

the recovered user in R(t) stands for those who have accessed

(have been served with) the content and will not request it again

for good. An infected user could attract a susceptible user to

access the content when they make contacts within a range of

contact δ. Furthermore, N denotes the total population in this

network, i.e. S(t) + I(t) + R(t) = N , ∀t ≥ 0. In the MSN,

the N mobile users move randomly in a L×L square area, in

which the content spreads and users interact among each other.

In the subsequent paragraphs we formulate the state equations

of caching at external BS and cooperative in-network caching
schemes.

A. Caching at External BS

In this scheme, infected users could only access the content

from a BS external to the MSN (e.g. a femto-cell BS) with

limited backhaul, as a traditional means to access the content.

The limited backhaul resource becomes a bottleneck for the

service rate u(t) of the BS. However, when caching the content

at BS, the service rate will increase due to the mitigation of

traffic load on backhaul by caching [13]. The service rate thus

can be expressed as

u(t) =

{
κ1, t < TC

κ2, t ≥ TC

(1)

TC is the time to cache the content at the BS, and 0 ≤ κ1 ≤
κ2 ≤ 1. κ2 and κ1 are the service rates with/ without caching

respectively.

The variation of infected population is determined by the

pairwise virality of the content, rate of encountered users and

the fraction of susceptible users to the epidemic content. The

recovered population is controlled by the service rate of the

BS. Putting all together, the state equations can be formulated

as ⎧⎪⎨⎪⎩
İ(t) = νηŜ(t)I(t)− u(t)I(t),

Ṙ(t) = u(t)I(t),

Ṡ(t) + İ(t) + Ṙ(t) = 0,

(2)

where Ŝ(t) = S(t)/N is the normalized susceptible population

at time t; ν ∈ R is the virality of the content, which can be

interpreted as the penchant for susceptible users to request the

content upon contact with infected users in the range δ; η =
πδ2/L2 is the average number of encountered users per unit

time. The last equation is implied from fixed total population.

B. Cooperative In-Network Caching

In the previous scheme, the feature of the MSN, direct

opportunistic exchange of contents, is utilized for content

dissemination. However, this feature could be further exploited

when caching is imposed on users in the MSN. In other words,

the recovered users could cache the epidemic content and share

it to socially satisfy other users, which can be treated as another

means to serve users in mobile networks. This new serving

mechanism, in fact, is a generalization of device-to-device

(D2D) communication when we consider caching utilization

in mobile networks [13]. The population of recovered users is

than further increased by the cooperative sharing among users.

The state equations can thus be formulated as⎧⎪⎨⎪⎩
İ(t) = νηŜ(t)I(t)− u(t)I(t)− φ(t)ηR̂(t)I(t),

Ṙ(t) = u(t)I(t) + φ(t)ηR̂(t)I(t),

Ṡ(t) + İ(t) + Ṙ(t) = 0,

(3)

where R̂(t) = R(t)/N is the normalized recovered population

at time t,

φ(t) =

{
0, t < TC

κ, t ≥ TC

(4)

and κ ∈ [0, 1] is the socially cooperative sharing coefficient

which can be interpreted as the pairwise willingness to share

the epidemic content. Initially, the recovered users do not know

whether to cache the content, and start to cache the content

and provide auxiliary sharing of the content after time TC .

A direct observation from (3) shows that in-network caching



proliferates the recovered population and therefore alleviates

the growth of infected population. Moreover, comparing (2)

and (3), caching at external BS is actually a degenerate case

of cooperative in-network caching when κ = 0, which means

that the total service of the content comes from the BS, as the

traditional means.

III. OPTIMAL CONTROL AND CACHING TIME

Since caching at external BS is a special case of in-network

caching scheme when there is no caching at users and hence

no direct content sharing, for the general case, we use the state

equations of cooperative in-network caching in (3) to obtain the

optimal control u∗(t) of u(t). As explained in section I, the cost

of caching is related to the time duration of caching, since in

the duration, the storage capacity for caching the content could

not store other contents. Therefore, the cost of caching could

be formulated into the cost of control u(t) in the duration,

since caching leads to higher service rate. Besides the cost,

the efficient control of caching also depends on the number

of recovered users. In more details, there is no recovered

user in the MSN at the beginning, causing scarce sharing

and inefficient caching; however, the number of recovered

users will increase by time and hence enhances the sharing,

thus rendering the time for caching a critical issue. Aiming

to determine the optimal control, we exploit optimal control

theory [14] to leverage the cost of caching and the efficiency of

epidemic content dissemination, i.e. to minimize the cumulative

number of users who want but still waiting for the content.

Consequently, the goal is to minimize the performance measure

functional J , where

J =

∫ Tf

Ti

I(t)β +
1

α
u(t)αdt (5)

and u(t) taking its α-power form, α ≥ 0; higher α means larger

cost of caching. β ≥ 0 represents the requirement of system

dynamic; larger β and hence larger cost I(t)β indicates that we

desire fewer unserved users in the system. Tf is the completion

time for observation which is assumed to be free and Ti is the

initial time set to be 0.

In optimal control theory, we construct the functional Hamil-

tonian H by applying Euler-Lagrange equation as

H (I(t), R(t), u(t),ΛI(t),ΛR(t))

= I(t)β +
1

α
u(t)α

+ ΛI(t)
[
νηŜ(t)I(t)− u(t)I(t)− φ(t)ηR̂(t)I(t)

]
+ ΛR(t)

[
u(t)I(t) + φ(t)ηR̂(t)I(t)

]
(6)

from which the costate variables Λ∗
I(t) and Λ∗

R(t) are the

partial derivatives of the Hamiltonian with respect to I(t) and

R(t):

Λ̇∗
I(t) = −∂H

∂I
= −βI(t)β−1

− Λ∗
I(t)

[
νη

N − 2I(t)−R(t)

N
− u(t)− φ(t)η

R(t)

N

]
− Λ∗

R(t)

[
u(t) + φ(t)η

R(t)

N

]
(7)

Λ̇∗
R(t) = −∂H

∂R

= Λ∗
I(t)

[
νη

I(t)

N
+ φ(t)η

I(t)

N

]
− Λ∗

R(t)φ(t)η
I(t)

N
(8)

with boundary conditions Λ̇∗
I(Tf ) = Λ̇∗

R(Tf ) = 0. Assuming

that all of the state and costate variables are according to

their values for the optimal control u∗(t), we rewrite the

Hamiltonian in (6) with the switching function

θ∗(t) := Λ∗
I(t)I(t)− Λ∗

R(t)I(t)

= [Λ∗
I(t)− Λ∗

R(t)] I(t) (9)

yielding

H (I∗(t), R∗(t), u(t),Λ∗
I(t),Λ

∗
R(t))

= I(t)β +
1

α
u(t)α − θ∗(t)u(t)

+ ηI∗(t)
[
Λ∗
I(t)

(
νŜ(t)− φ(t)R̂(t)

)
+ Λ∗

R(t)φ(t)R̂(t)
]
(10)

By Pontryagin’s minimum principle [16], the unconstrained

optimal control U∗(t) with free end time Tf that minimizes the

performance measure J is the solution of the equation ∂H
∂u = 0.

From the reformed Hamiltonian in (10), we have

U∗(t) = θ∗(t)
1

α−1 (11)

That is, U∗(t) can be obtained by solving the state and costate

variables in (3), (7) and (8). Moreover, with the acceptable

control u(t) ∈ [0, 1], the induced constrained optimal control

u∗(t) is

u∗(t) =

⎧⎪⎨⎪⎩
0 if θ∗(t) ≤ 0

θ∗(t)
1

α−1 if θ∗(t) ∈ (0, 1)

1 if θ∗(t) ≥ 1

(12)

where the induced u∗(t) is actually the saturated unconstrained

optimal control.

Manifestly, a discrepancy exists between the service rate

in (1) and the constrained optimal control u∗(t), since in

our derivative, u∗(t) is acquired by presuming that immediate

caching is permissible from initial time 0, whereas in (1),

we consider a more realistic situation where the service rate

increases only after the caching time TC since it relieves

the backhaul traffic load of the BS. Reflecting pragmatic

implementation, the time T ∗
C is the optimal caching time for

caching at external BS and cooperative in-network caching that

minimizes the performance measure J , viz

T ∗
C = argmin

TC

J (13)

With this T ∗
C , we can bridge the theoretical gap between (1)

and (12). We will show that the solution in (13) provides an

efficacious strategy for caching at external BS and in-network

caching of the epidemic content in section V.

IV. PROACTIVE CACHING ANALYSIS

In addition to optimal control approach and optimal caching

time obtained in section III, we furnish proactive caching



analysis, with an aim to determine optimal caching time in

early stage to handle the outbreak of the epidemic content.

The importance of proactive caching analysis lies on the fact

that a severe outbreak of epidemic contents usually leads to

suddenly massive requests beyond the system load, and it might

be too late to cache the content at that time moment. Thus,

analysis in the early-stage of the epidemic process helps store

the content to handle the outbreak timely and efficiently for

caching utilization. In the early stage, the state evolutionary

equations (3) at time τ � Tf approximates a standard coupling

regulator problem [14] when S(τ) ≈ N and I(τ) ≈ I0 � N :{
R(τ) = exp

(
1
N φ(t)ητI0

)− 1 ≈ 1
N φ(t)ητI0

İ(t) =
[
νη − u(t)− (

1
N φ(t)η

)2
τI0

]
I(t)

(14)

By (1) and (4), we obtain

I(t) = I0 exp

((
νη − u(t)−

(
1

N
φ(t)η

)2

τI0

)
t

)

=

{
I0 exp ((νη − κ1) t) , t < TC

I0 exp
((

νη − κ2 − κ2η2

N2 τI0

)
t
)
, t ≥ TC

(15)

where I0 is the initial infected population. The analytical

form of the functional performance measure J in (5) becomes

merely a function of TC :

J̃ =

∫ Tf

0

I(t)β +
1

α
u(t)αdt

=

∫ TC

0

I(t)β +
1

α
κα
1 dt+

∫ Tf

TC

I(t)β +
1

α
κα
2 dt

=
Iβ0
βA1

[exp (βA1TC)− 1] +
1

α
κα
1TC

+
Iβ0
βA2

[exp (βA2Tf )− exp (βA2TC)] +
1

α
κα
2 (Tf − TC)

(16)

where A1 = νη − κ1 and A2 = νη − κ2 − κ2η2

N2 τI0, for

simplicity. Similar to optimal control, the optimal caching time

when adopting proactive caching analysis can therefore be

gained by

T̃ ∗
C = argmin

TC

J̃ . (17)

The advantage of above proactive caching analysis is to con-

vert the original functional J into a relatively simple function

of time J̃ , via relaxing the computation to solve the non-linear

ODEs in (3) for optimal control in section III. Nevertheless,

it may suffer from potential waste of caching resources by

overestimating the level of outbreak of the epidemic content,

as a result of the assumption S(τ) ≈ N .

V. PERFORMANCE EVALUATION

We illustrate the system dynamics and the optimal caching

time under different settings of the cost of caching α and

the requirement of system dynamic β. To be more specific,

α could be understood as the scarcity of caching resource

in the network. In system view, a larger amount of contents

circulating in the MSN sharing the storage at the BS makes

storage capacity more scarce resources, and thus larger α.

Meanwhile, β represents the requirement of quality of system

dynamics. When the quality is required high, the number of

users who want but are waiting for the content should be as

few as possible, and β becomes large. Moreover, the optimal

caching time is also investigated with respect to the virality of

the content, as a different system feature than popularities of

the contents. Pertaining to the simulation setup, N nodes are

travelling in a square area with wrap-around condition via Lèvy

walk mobility model to account more for human behavior [17],

where the step size and pause time are accounted by a power-

law distribution with negative exponent. We set the step size

exponent to be 1.5 and the pause time exponent to be 1.38,

respectively, which fits the real trace-based data collected in

[18].

The system dynamics under caching at external BS scheme

is shown in Fig. 2. The difference between the system dynamics

of optimal control u∗(t) and the simulation results adopting

optimal caching time T ∗
C results from the gap between the

optimal time (1) and the optimal control (12) as discussed in

section III. The solution of T ∗
C in (13) is shown to be effi-

cacious for epidemic content dissemination since it minimizes

the performance measure J which is related to the number of

users still waiting for the content in the observing area up to

Tf . The solution of T̃ ∗
C from proactive caching analysis has a

resembling effect on epidemic content dissemination, however,

with a smoother decaying as a result of the approximation

in section IV. Moreover, For in-network caching scheme, the

system dynamic of users waiting for the content is further

suppressed as shown in Fig. 3. For small κ (≈ 0.1), the impact

of in-network caching is apparent, suggesting a slight incentive

to promote social cooperation among users to share the content

could result in improvements in system dynamics, and is an

important design consideration in mobile social networks.

Subsequently, we investigate the optimal caching time with

respect to system performance requirements, the cost of

caching α and the requirement of system dynamic in the

network β. In Fig. 4, the optimal caching time increases with

the increase of α, since if there are many contents circulating

in the MSN, a longer time is needed to decide whether to

cache the viral content, in order to optimize the usage of

storage capacity at the BS and the users. Nevertheless, since

the number of users who have viewed the content grows by

time, late caching time implies better chance to efficaciously

utilize caching among the users for sharing. However, as we

require the number of users waiting for the content as few as

possible, the optimal caching time becomes early to handle

the requirement. These two factors form a trade-off in design

optimal caching utilization in mobile social networks to serve

epidemic contents. Furthermore, we observe that in-network

caching contributes to early caching by starting storing in

recovered users to create more in-network sharers of the epi-

demic content. Similar effects for cost of caching and service

requirements in the network can be found for proactive caching

analysis in Fig. 5. It is worth mentioning that when the cost of

caching is small (less than 1), the assumption that S(t) ≈ N
and the low cost of caching lead to immediate caching than the

results in Fig. 4, yet when the cost is large, it causes pessimistic

outcome of late caching time than that in Fig. 4. In other words,
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Fig. 2: System dynamics under caching at external BS. The difference
between the information dynamic of optimal control u∗(t) and the simulation
results adopting optimal caching time T ∗

C results from the gap between the
optimal time (1) and the optimal control (12). N = 1000, I0 = 1, L = 100,
δ = 1, ν = 1, κ1 = 0.1, κ2 = 0.2, α = β = 2, τ = 1, Ti = 0, Tf = 80,
ΛI(0) = 20, ΛR(0) = 10, with 1000 times of simulations
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Fig. 3: System dynamics under in-network caching. With cooperative
caching, the population of users waiting for the content is obviously reduced
comparing to Fig. 2, where only caching at external BS is utilized. N = 1000,
I0 = 1, L = 100, δ = 1, ν = 1, κ1 = 0.1, κ2 = 0.2, κ = 0.1, α = β = 2,
τ = 1, Ti = 0, Tf = 80, ΛI(0) = 20, ΛR(0) = 10, with 1000 times of
simulations

the cost of caching is the major determinant of optimal caching

time in proactive caching analysis, for it always overestimates

the severeness of the outbreak.

Finally, we plot the optimal caching time T ∗
C versus virality

ν in Fig. 6, for virality is proposed as another content feature

rather than popularities in this paper. Obviously, a highly

viral content advances the optimal caching time to handle

suddenly massive requirements; while for lowly viral content,

the optimal caching time is late since it takes longer time for

the content to infect enough users to help serve the users.

For different situations of caching cost and the requirement

of system dynamic, our previous discussion still holds; that

is, large α delays optimal caching time and large β advances

it. The virality of an epidemic content has more pragmatic

meaning than merely the popularity in a mobile social network

[12], since prefect and centralized traffic monitoring to obtain

popularity is often arduous and not timely. Therefore, virality

holds a chance as a more realistic feature when it comes to

dynamic social systems, and an important system character-
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Fig. 4: Optimal caching time T ∗
C under different (α, β) configurations, where

α stands for the cost of caching and β stands for the requirement of system
dynamic. Small cost of caching and high requirement results in immediate
caching. N = 1000, I0 = 1, L = 100, δ = 1, ν = 1, κ1 = 0.1, κ2 = 0.2,
κ = 0.15, Ti = 0, Tf = 150, ΛI(0) = 20, ΛR(0) = 10.
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Fig. 5: Optimal caching time ˜T ∗
C under different (α, β) configurations. In

proactive caching analysis, the overestimation of outbreak of the epidemic
content advances the optimal caching time in general, comparing to Fig. 4.
N = 1000, I0 = 1, L = 100, δ = 1, ν = 1, κ1 = 0.1, κ2 = 0.2, κ = 0.15,
τ = 1, Ti = 0, Tf = 150, ΛI(0) = 20, ΛR(0) = 10.

istic when designing communication and information sharing

networks. It is obvious that for a small change in virality, e.g.
from 1.5 to 2.0, the optimal caching time could varies from

about 36 to 30 seconds. Consequently, virality prediction [12]

becomes a critical information collection mechanism of content

properties in mobile social networks for caching utilization.

VI. CONCLUSION

In this paper, we investigate the optimal utilization of

caching in mobile social networks for content dissemination

by deriving optimal caching time, compromising between the

system cost of caching and the system service requirements,

which are two important factors when designing networks for

efficient content dissemination. Via epidemic modelling, we

exploit optimal control theory to determine the optimal caching

time for efficacious and timely control. Subsequently, as a

preventive system response to predict and handle a severe

outbreak of demand for the content, we provide proactive

caching analysis to alleviate such instantaneous service burden

for the infrastructure in the network. Analytical derivation
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Fig. 6: Optimal caching time versus virality ν under different (α, β)
configurations. A highly viral content leads to early optimal caching time to
handle massive outbreak. Virality hence provides an important content feature
when implementing caching. N = 1000, I0 = 1, L = 100, δ = 1, κ1 = 0.1,
κ2 = 0.2, κ = 0.2, τ = 1, Ti = 0, Tf = 150, ΛI(0) = 20, ΛR(0) = 10.

and simulation results support that the epidemic content can

be efficiently spread through service provided by caching at

external BS, while cooperative in-network caching boosts the

dissemination of the epidemic content by storing the content

in users and sharing it upon contacts with users still waiting

for the content. Moreover, virality is shown to be an impor-

tant content feature when implementing caching in dynamic

systems. Consequently, from viewpoints of system dynamic

and costs, this paper reveals novel insights and analysis of

optimal caching time toward effectual and robust epidemic

content dissemination in mobile social networks.
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